Difference between revisions of "Pixels a beginners guide"

From diychristmas.org wiki
Jump to navigation Jump to search
Line 15: Line 15:
 
How the lamp is controlled defined as either "dumb" or "smart" pixels.
 
How the lamp is controlled defined as either "dumb" or "smart" pixels.
  
In a dumb pixel, the 3 switches control the entire string of pixels, these are usually located on the board much like traditional controller boards. Like traditional lights the entire string lights up the same color.
+
In a dumb pixel, the 3 switches control the entire string of pixels, these are usually located on the board much like traditional controller boards. Like traditional lights the entire string lights up the same color, though they can be any color you choose.
  
 
In a smart pixel, in these there are 3 switches in each pixel (so Pixel No. 1 can be red, Pixel No. 2 can be green and Pixel No. 3 can be — well, any color you want). In a smart pixel string there can be several hundred switches depending on the number of pixels. Smart pixel controllers send a signal down a wire that makes sure each light element gets the signal that is supposed to go to that element. Smart pixels each pixel can be any color at any time.
 
In a smart pixel, in these there are 3 switches in each pixel (so Pixel No. 1 can be red, Pixel No. 2 can be green and Pixel No. 3 can be — well, any color you want). In a smart pixel string there can be several hundred switches depending on the number of pixels. Smart pixel controllers send a signal down a wire that makes sure each light element gets the signal that is supposed to go to that element. Smart pixels each pixel can be any color at any time.

Revision as of 15:45, 8 July 2015

This is the place to start off learning about Pixels. NOTE: individual controllers, pixel strips / nodes, troubleshooting, and other non basic items will not be covered in this Wiki please look for the correct Wiki for your specific questions.

So your interested in learning about pixels, they are an amazing technology that is growing rapidly in DIY lighting. Throughout this intro Wiki there will be some concepts that may be difficult to soak in all at once, refer back to this as necessary.


A basic idea of how Pixels work versus the more traditional lighting in computer controlled shows:

Traditional lighting and its controllers function like a dimmer switch on the wall: the light is on or off and varies in intensity based on the position of the dimmer switch. Each dimmer switch is its own channel and a show consists of several to several hundred switches. To help ease the amount of boxes most of these switches are conveniently placed in groups of them on a board, you will find boards that have 4, 8, 12, 16 or even up to 48 switches on a single board, allowing for one connection to control a great number of lights.

These boards are controlled by a signal generated by a computer running software that sends the signals, the boards figure out what switch is being referenced in the signal and adjusts the correct switch making all lights plugged into the switch dim/brighten.

Pixels are different in that one switch does not control the whole lamp; instead each pixel is comprised of 3 lights, one red, one green, and one blue. So each pixel needs 3 "switches" to make it function.

How the lamp is controlled defined as either "dumb" or "smart" pixels.

In a dumb pixel, the 3 switches control the entire string of pixels, these are usually located on the board much like traditional controller boards. Like traditional lights the entire string lights up the same color, though they can be any color you choose.

In a smart pixel, in these there are 3 switches in each pixel (so Pixel No. 1 can be red, Pixel No. 2 can be green and Pixel No. 3 can be — well, any color you want). In a smart pixel string there can be several hundred switches depending on the number of pixels. Smart pixel controllers send a signal down a wire that makes sure each light element gets the signal that is supposed to go to that element. Smart pixels each pixel can be any color at any time.

Pixels come in a variety of profiles:

  • Pixel bullets look something like traditional lights — there is a "bullet" and then a run of wire and then another pixel "bullet," and so on. But remember, each one can change color.
  • Square pixels are like bullets, except each lamp is a one-inch by one-inch by one-quarter-inch plastic box. Again, box and then a run of wire and then another box and so on.
  • Pixel bulbs look like traditional C7 or C9 bulbs — about 1-1/2 or two inches long with a frosted or faceted cover. Like bullets and squares, each element is separated by a length of wire.
  • Pixel strips (which come as either rigid or flexible) are long, narrow printed circuit boards that have lamps attached every few inches. The pixels can be close together or far apart — space is varied by what you want or is available.

It is up to the individual as to whether to use bullets, squares, bulbs or strips based on how you want your lights to look. All function the same, only their appearance is different.

As you can see, there is a lot to consider when opting for pixels.

A quick overview of how the boards receive their signals

There is a myriad of different protocols that are used today, think of different cell phone companies, there is no right or wrong protocol just as there is no right or wrong cell phone company. The protocol is just a way of getting the signal from your computer to the controller board. The pixels themselves have their own native language they speak, but just like your cell phone its range is limited, usually less than 20 feet between individual pixels. The protocol carries that native language to the various controller boards, and is able to cover the distances needed between controllers and computer. Some boards will need a bridge to convert the carrier protocol to a signal that can communicate with the board, check with your individual board to see what is needed.


Identity and pixels

How does each switch know what part of the signal applies to it? Think of your phone number here, each switch is assigned a number by the computer software, just like a phone number there can be enough different numbers that it will be hard to know what is what. We have area codes on our phone numbers to help distinguish what goes where, in the pixel world we divide switches up into a 512 switch grouping and call that a universe. So our carrier sends a signal, that signal starts with what universe the next 512 "channels" are in, when talking about the signal each switch is referenced as a channel. We then assign the bridges or boards to "listen" to certain universes. We can even assign boards to only select certain channels inside of that universe.

So we have an idea of how the pixels and protocols work, now lets cover some basics about the controllers.

Please note specific boards is beyond the scope of this wiki and will not be answered

In a dumb pixel board the board is assigned what universe and what start channel it is supposed to use. In a dumb controller, output 1 is the first 3 channels assigned to the board, output 2 is the next 3 channels assigned to the board and so on. Dumb pixel controllers can, for example, control 3 channels (a single strand) to 27 channels (9 strands) and beyond. You can hook together more than one strand just like you can hook traditional lights together, all strands connected together will be the same color.

In a smart Pixel controller board the board is not directly assigned universe or channel numbers, instead each output on the board is assigned what universe and channel number it starts with. Instead of having the switches on the board they are in the individual pixels, so the board sends a native language signal out on each output that starts with the correct universe and channel that is assigned to the output, when the first pixel gets that signal it uses the first 3 channels (remember each pixel has 3 switches), the pixel then "regenerates" the signal marking the 3 channels it used and sends the signal on its way to the next pixel, the next pixel uses the first 3 unmarked channels, regenerates the signal marking the 3 channels it used and so on down the string. This way each pixel uses the correct channels and transfers the signal down its length. You can connect several strings of lights together using this but any pixels past the last channel on the signal will not have data on what channels to use since all of them are marked, and will not work.

So we have covered the general concept of pixels hopefully this will help to clear some of the fog.